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A cartoon of a neuron

The activity of the hidden neuron hj is a function of the
spiking activity of upstream neurons:

hj ∝ σ
(∑

i xiW
ij
0

)



A cartoon of a network of neurons

The network computes via:

h = σ(W0x)

y = σ(Wh)



What can these networks do?
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How are network connections adapted to tasks?



Learning is faster if we know how we screwed up, if we use
errors.



How are errors used deep within the network?



Backprop is gradient descent; weights changes correspond
precisely with contribution to loss.

I Weight updates, in the linear case, are:

∆W ∝ ∂L/∂W = ehT, and

∆W0 ∝ ∂L/∂W0 = (∂L/∂h)(∂h/∂W0) = −W TexT.

I Feedback neurons must “know” the forward weights.
This is the weight transport problem
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Instead of sending errors back through W T errors can be
sent through fixed random connections B .



Deep neurons recieve a random projection of the errors as
feedback. Initially, this feedback is totally unrelated to a

neuron’s actual contributions to the error.

“His policy was to find one person and make their life
difficult until everything happened the way he wanted it
to. (A policy adopted by almost all managers and several
notable gods.)” - Terry Pratchet ‘Interesting Times’



We call this feedback alignment. Shockingly, learning is as
fast and as accurate as with backprop.
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It works on a classic benchmark MNIST.
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It works on a classic benchmark MNIST.

I MNIST is 60,000 training and 10,000 testing images of
handwritten digits.

I Each image is 28x28 greyscale pixels.

I Train a 784-1500-1500-1500-10 network of tanh units.

I Basic backprop: 1.6% error.

I Basic feedback alignment: 1.3% error.
I We can trick out feedback alignment:

I Add Drop-out: 1.2% error.
I Add piecewise linear units: 1.1% error.
I Add topological information: 0.8% error.
I Add dataset augmentation: 0.4% error.

I Fully tricked out backprop: 0.2% error.



It works on a newer, bigger, harder set of pictures of
numbers.
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It works on a newer, bigger, harder set of pictures of
numbers.

I SVHN is 604,388 training and 26,032 testing images.

I Each image is a 32x32 pixel colour photograph of a house
number taken from Google street view.

I Train a 1024-3000-3000-3000-3000-10 network of tanh
units.

I Basic backprop: 10.3% error.

I Basic feedback alignment: 9.7% error.
I We can trick out feedback alignment:

I topological information: 8.1% error.
I Add piecewise linear units: 7.1% error.



It works on a phoneme categorization task.
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It works on a phoneme categorization task.

I TIMIT is 63,881 training and 22,257 testing phoneme
labled audio frames.

I 630 individuals from eight American English dialects, a
variety of phonetic content.

I 10ms audio frames converted to Mel-frequency cepstral
coefficients (MFCC) features.

I Inputs are the MFCC’s concatenated with their first two
temporal derivatives.
This gives a 39 dimensional input space.

I Train a 39-1000-1000-1000-6 network of tanh units.

I Basic backprop: 24.3% error.

I Basic feedback alignment: 23.1% error.



Outline

1. Deep Learning and the “Weight Transport” problem

2. Our Solution, Feedback Alignment

3. Show it works

4. Intuition as to why it might work

5. Back to the brain



With Feedback Alignment the network learns to learn.
Initial teaching signal are useless, but they swiftly align

with those prescribed by backprop.



Teaching signals align because W is aligning with B .



Revealing the flow of information from B into W , via W0.
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Fast deep learning requires unit-specific error feedback.
Backprop requires feedback be sent via a precise

symmetric copy of the downstream synaptic weight matrix.
How could such detailed feedback information be

propagated backward in biological networks?

I It doesn’t need to be!



Deep learning algorithms compare actual outputs to
desired outputs, in order to produce error signals. Where

do desired outputs come from and how are errors
computed and represented in the brain?

I From Sensory/Motor and Prediction Mismatches.

I Favourite reference:
Bell et al. (1997) The generation and subtraction of
sensory expectations within cerebellum-like structures.



Once error signals have been generated, how can they be
delivered and used without disrupting forward activity.

I Modulatory third factors!
1. Neuromodulators.
2. Calcium synapses.
3. Differentiated sub-cellular compartments.

I They all can alter the magnitude and sign of Hebbian and
STDP induction.

I Favourite reference:
Coesmans et al. (2004) Bidirectional parallel fiber
plasticity in the cerebellum under climbing fiber control.



What have we done? What Haven’t we done?

I Shown that we don’t need to transport weight information
at all.

I Forward connection magically align to make use of fixed
random feedback.

I This gives us a rough outline of how the empirically
observed error neurons, and third-factor plasticity
modulators might interact to produce an effective neural
network.

I We have largely ignored time.
I The machine learning problems are all static
I Real brains produce a stream of motor commands contingent

of a stream of sensory inputs and reccurrent neural activity.



Thank you for listening
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