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A. Generative denoising autoencoders with
local noise

The main theorem in Bengio et al. (2013) (reproduced be-
low as Theorem S1) requires the Markov chain to be er-
godic. Sufficient conditions to guarantee ergodicity are
given in the aforementioned paper, but they are some-
what restrictive, requiring C(X̃|X) > 0 everywhere that
P (X) > 0. Here we show how to relax these conditions
and still obtain ergodicity.

Let Pθn
(X|X̃) be a denoising auto-encoder that has been

trained on n training examples. Pθn(X|X̃) assigns a prob-
ability to X , given X̃ , when X̃ ∼ C(X̃|X). This estimator
defines a Markov chain Tn obtained by sampling alterna-
tively an X̃ from C(X̃|X) and an X from Pθ(X|X̃). Let
πn be the asymptotic distribution of the chain defined by
Tn, if it exists. The following theorem is proven by Bengio
et al. (2013).

Theorem S1. If Pθn
(X|X̃) is a consistent estimator of the

true conditional distribution P (X|X̃) and Tn defines an
ergodic Markov chain, then as n → ∞, the asymptotic
distribution πn(X) of the generated samples converges to
the data-generating distribution P (X).

In order for Theorem S1 to apply, the chain must be er-
godic. One set of conditions under which this occurs is
given in the aforementioned paper. We slightly restate them
here:

Corollary 1. If the support for both the data-generating
distribution and denoising model are contained in and
non-zero in a finite-volume region V (i.e., ∀X̃ , ∀X /∈
V, P (X) = 0, Pθ(X|X̃) = 0 and ∀X̃ , ∀X ∈ V, P (X) >
0, Pθ(X|X̃) > 0, C(X̃|X) > 0) and these statements re-
main true in the limit of n→∞, then the chain defined by
Tn will be ergodic.

If conditions in Corollary 1 apply, then the chain will be
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Figure 1. If C(X̃|X) is globally supported as required by Corol-
lary 1 (Bengio et al., 2013), then for Pθn(X|X̃) to converge to
P (X|X̃), it will eventually have to model all of the modes in
P (X), even though the modes are damped (see “leaky modes”
on the left). However, if we guarantee ergodicity through other
means, as in Corollary 2, we can choose a local C(X̃|X) and al-
low Pθn(X|X̃) to model only the local structure of P (X) (see
right).
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ergodic and Theorem S1 will apply. However, these con-
ditions are sufficient, not necessary, and in many cases
they may be artificially restrictive. In particular, Corol-
lary 1 defines a large region V containing any possible X
allowed by the model and requires that we maintain the
probability of jumping between any two points in a single
move to be greater than 0. While this generous condition
helps us easily guarantee the ergodicity of the chain, it also
has the unfortunate side effect of requiring that, in order
for Pθn

(X|X̃) to converge to the conditional distribution
P (X|X̃), it must have the capacity to model every mode
of P (X), exactly the difficulty we were trying to avoid.
The left two plots in Figure 1 show this difficulty: because
C(X̃|X) > 0 everywhere in V , every mode of P (X) will
leak, perhaps attenuated, into P (X|X̃).

Fortunately, we may seek ergodicity through other means.
The following corollary allows us to choose a C(X̃|X)
that only makes small jumps, which in turn only requires
Pθ(X|X̃) to model a small part of the space V around each
X̃ .

Let Pθn
(X|X̃) be a denoising auto-encoder that has been

trained on n training examples and C(X̃|X) be some cor-
ruption distribution. Pθn

(X|X̃) assigns a probability to
X , given X̃ , when X̃ ∼ C(X̃|X) and X ∼ P(X). De-
fine a Markov chain Tn by alternately sampling an X̃ from
C(X̃|X) and an X from Pθ(X|X̃).

Corollary 2. If the data-generating distribution is con-
tained in and non-zero in a finite-volume region V (i.e.,
∀X /∈ V, P (X) = 0, and ∀X ∈ V, P (X) > 0) and
all pairs of points in V can be connected by a finite-length
path through V and for some ε > 0, ∀X̃ ∈ V,∀X ∈ V
within ε of each other, C(X̃|X) > 0 and Pθ(X|X̃) > 0
and these statements remain true in the limit of n → ∞,
then the chain defined by Tn will be ergodic.

Proof. Consider any two points Xa and Xb in V . By
the assumptions of Corollary 2, there exists a finite length
path between Xa and Xb through V . Pick one such fi-
nite length path P . Chose a finite series of points x =
{x1, x2, . . . , xk} along P , with x1 = Xa and xk = Xb

such that the distance between every pair of consecutive
points (xi, xi+1) is less than ε as defined in Corollary 2.
Then the probability of sampling X̃ = xi+1 from C(X̃|xi))
will be positive, because C(X̃|X)) > 0 for all X̃ within
ε of X by the assumptions of Corollary 2. Further, the
probability of sampling X = X̃ = xi+1 from Pθ(X|X̃)
will be positive from the same assumption on P . Thus
the probability of jumping along the path from xi to xi+1,
Tn(Xt+1 = xi+1|Xt = xi), will be greater than zero
for all jumps on the path. Because there is a positive
probability finite length path between all pairs of points
in V , all states commute, and the chain is irreducible. If
we consider Xa = Xb ∈ V , by the same arguments

Tn(Xt = Xa|Xt−1 = Xa) > 0. Because there is a pos-
itive probability of remaining in the same state, the chain
will be aperiodic. Because the chain is irreducible and over
a finite state space, it will be positive recurrent as well.
Thus, the chain defined by Tn is ergodic.

Although this is a weaker condition that has the advantage
of making the denoising distribution even easier to model
(probably having less modes), we must be careful to choose
the ball size ε large enough to guarantee that one can jump
often enough between the major modes of P (X) when
these are separated by zones of tiny probability. ε must be
larger than half the largest distance one would have to travel
across a desert of low probability separating two nearby
modes (which if not connected in this way would make V
not anymore have a single connected component). Practi-
cally, there would be a trade-off between the difficulty of
estimating P (X|X̃) and the ease of mixing between major
modes separated by a very low density zone.

B. Supplemental Theorem Proofs
Theorem 2 was stated in the paper without proof. We re-
produce it here, show a proof, and then discuss its robust-
ness in a context in which we train on a finite number of
samples.

Theorem 2. Let (Ht, Xt)
∞
t=0 be the Markov chain defined

by the following graphical model.

X2X0 X1

H
0

H
1

H2

If we assume that the chain has a stationary distribution
πH,X , and that for every value of (x, h) we have that

• all the P (Xt = x|Ht = h) = g(x, h) share the same
density for t ≥ 1

• all the P (Ht+1 = h|Ht = h′, Xt = x) = f(h, h′, x)
shared the same density for t ≥ 0

• P (H0 = h|X0 = x) = P (H1 = h|X0 = x)

• P (X1 = x|H1 = h) = P (X0 = x|H1 = h)

then for every value of (x, h) we get that

• P (X0 = x|H0 = h) = g(x, h) holds, which is some-
thing that was assumed only for t ≥ 1

• P (Xt = x,Ht = h) = P (X0 = x,H0 = h) for all
t ≥ 0
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• the stationary distribution πH,X has a marginal dis-
tribution πX such that π (x) = P (X0 = x).

Those conclusions show that our Markov chain has the
property that its samples in X are drawn from the same
distribution as X0.

Proof. The proof hinges on a few manipulations done with
the first variables to show that P (Xt = x|Ht = h) =
g(x, h), which is assumed for t ≥ 1, also holds for t = 0.

For all h we have that

P (H0 = h) =
∫
P (H0 = h|X0 = x)P (X0 = x)dx

=
∫
P (H1 = h|X0 = x)P (X0 = x)dx

= P (H1 = h).

The equality in distribution between (X1, H1) and
(X0, H0) is obtained with

P (X1 = x,H1 = h) = P (X1 = x|H1 = h)P (H1 = h)
= P (X0 = x|H1 = h)P (H1 = h)

(by hypothesis)
= P (X0 = x,H1 = h)
= P (H1 = h|X0 = x)P (X0 = x)
= P (H0 = h|X0 = x)P (X0 = x)

(by hypothesis)
= P (X0 = x,H0 = h).

Then we can use this to conclude that

P (X0 = x,H0 = h) = P (X1 = x,H1 = h)
=⇒ P (X0 = x|H0 = h) = P (X1 = x|H1 = h) = g(x, h)

so, despite the arrow in the graphical model being turned
the other way, we have that the density of P (X0 = x|H0 =
h) is the same as for all other P (Xt = x|Ht = h) with
t ≥ 1.

Now, since the distribution of H1 is the same as the dis-
tribution of H0, and the transition probability P (H1 =
h|H0 = h′) is entirely defined by the (f, g) densities which
are found at every step for all t ≥ 0, then we know that
(X2, H2) will have the same distribution as (X1, H1). To
make this point more explicitly,

P (H1 = h|H0 = h′)
=

∫
P (H1 = h|H0 = h′, X0 = x)P (X0 = x|H0 = h′)dx

=
∫
f(h, h′, x)g(x, h′)dx

=
∫
P (H2 = h|H1 = h′, X1 = x)P (X1 = x|H1 = h′)dx

= P (H2 = h|H1 = h′)

This also holds for P (H3|H2) and for all subsequent
P (Ht+1|Ht). This relies on the crucial step where we
demonstrate that P (X0 = x|H0 = h) = g(x, h). Once
this was shown, then we know that we are using the same
transitions expressed in terms of (f, g) at every step.

Since the distribution of H0 was shown above to be the
same as the distribution of H1, this forms a recursive argu-
ment that shows that all the Ht are equal in distribution to
H0. Because g(x, h) describes every P (Xt = x|Ht = h),
we have that all the joints (Xt, Ht) are equal in distribution
to (X0, H0).

This implies that the stationary distribution πX,H is the
same as that of (X0, H0). Their marginals with respect to
X are thus the same.

To apply Theorem 2 in a context where we use experimen-
tal data to learn a model, we would like to have certain
guarantees concerning the robustness of the stationary den-
sity πX . When a model lacks capacity, or when it has seen
only a finite number of training examples, that model can
be viewed as a perturbed version of the exact quantities
found in the statement of Theorem 2.

A good overview of results from perturbation theory
discussing stationary distributions in finite state Markov
chains can be found in (Cho et al., 2000). We reference
here only one of those results.

Theorem 3. Adapted from (Schweitzer, 1968)

Let K be the transition matrix of a finite state, irreducible,
homogeneous Markov chain. Let π be its stationary dis-
tribution vector so that Kπ = π. Let A = I − K and
Z = (A+ C)−1 where C is the square matrix whose
columns all contain π. Then, if K̃ is any transition ma-
trix (that also satisfies the irreducible and homogeneous
conditions) with stationary distribution π̃, we have that

‖π − π̃‖1 ≤ ‖Z‖∞
∥∥∥K − K̃∥∥∥

∞
.

This theorem covers the case of discrete data by show-
ing how the stationary distribution is not disturbed by
a great amount when the transition probabilities that we
learn are close to their correct values. We are talk-
ing here about the transition between steps of the chain
(X0, H0), (X1, H1), . . . , (Xt, Ht), which are defined in
Theorem 2 through the (f, g) densities.

We avoid discussing the training criterion for a GSN. Var-
ious alternatives exist, but this analysis is for future work.
Right now Theorem 2 suggests the following rules :

• Pick the transition distribution f(h, h′, x) to be useful
(e.g. through training that maximizes reconstruction
likelihood).
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• Make sure that during training P (H0 = h|X0 =
x) → P (H1 = h|X0 = x). One interesting way
to achieve this is, for each X0 in the training set, iter-
atively sample H1|(H0, X0) and substitute the value
of H1 as the updated value of H0. Repeat until you
have achieved a kind of “burn in”. Note that, after
the training is completed, when we use the chain for
sampling, the samples that we get from its stationary
distribution do not depend on H0. This technique of
substituting theH1 intoH0 does not apply beyond the
training step.

• Define g(x, h) to be your estimator for P (X0 =
x|H1 = h), e.g. by training an estimator of this con-
ditional distribution from the samples (X0, H1).

• The rest of the chain for t ≥ 1 is defined in terms of
(f, g).

As much as we would like to simply learn g from pairs
(H0, X0), the problem is that the training samples X(i)

0

are descendants of the corresponding values of H(i)
0 in the

original graphical model that describes the GSN. Those
H

(i)
0 are hidden quantities in GSN and we have to find a

way to deal with them. Setting them all to be some default
value would not work because the relationship between H0

and X0 would not be the same as the relationship later be-
tween Ht and Xt in the chain.

Proposition 1 was stated in the paper without proof. We
reproduce it here and then show a proof:

Proposition 1. If a subset x(s) of the elements of X is kept
fixed (not resampled) while the remainderX(−s) is updated
stochastically during the Markov chain of Theorem 2, but
using P (Xt|Ht, X

(s)
t = x(s)), then the asymptotic distri-

bution πn of the Markov chain produces samples of X(−s)

from the conditional distribution πn(X(−s)|X(s) = x(s)).

Proof. Without constraint, we know that at convergence,
the chain produces samples of πn. A subset of these sam-
ples satisfies the conditionX = x(s), and these constrained
samples could equally have been produced by samplingXt

from Pθ2(Xt|fθ1(Xt−1, Zt−1, Ht−1), X
(s)
t = X(s)), by

definition of conditional distribution. Therefore, at conver-
gence of the chain, we have that using the constrained dis-
tribution P (Xt|f(Xt−1, Zt−1, Ht−1), X

(s)
t = x(s)) pro-

duces a sample from πn under the condition X(s) =
x(s).

C. Supplemental Experimental Results
Experiments evaluating the ability of the GSN models to
generate good samples were performed on the MNIST and
TFD datasets, following the setup in Bengio et al. (2013c).
Theorem 2 requires H0 to have the same distribution as H1

(given X0) during training, and the main paper suggests a
way to achieve this by initializing each training chain with
H0 set to the previous value of H1 when the same example
X0 was shown. However, we did not implement that pro-
cedure in the experiments below, so that is left for future
work to explore.

Networks with 2 and 3 hidden layers were evaluated
and compared to regular denoising auto-encoders (just
1 hidden layer, i.e., the computational graph separates
into separate ones for each reconstruction step in the
walkback algorithm). They all have tanh hidden units
and pre- and post-activation Gaussian noise of standard
deviation 2, applied to all hidden layers except the first.
In addition, at each step in the chain, the input (or the
resampled Xt) is corrupted with salt-and-pepper noise of
40% (i.e., 40% of the pixels are corrupted, and replaced
with a 0 or a 1 with probability 0.5). Training is over
100 to 600 epochs at most, with good results obtained
after around 100 epochs, using stochastic gradient descent
(minibatch size = 1). Hidden layer sizes vary between
1000 and 1500 depending on the experiments, and a
learning rate of 0.25 and momentum of 0.5 were selected
to approximately minimize the reconstruction negative
log-likelihood. The learning rate is reduced multiplica-
tively by 0.99 after each epoch. Following Breuleux et
al. (2011), the quality of the samples was also estimated
quantitatively by measuring the log-likelihood of the
test set under a Parzen density estimator constructed
from 10000 consecutively generated samples (using the
real-valued mean-field reconstructions as the training data
for the Parzen density estimator). This can be seen as an
lower bound on the true log-likelihood, with the bound
converging to the true likelihood as we consider more
samples and appropriately set the smoothing parameter of
the Parzen estimator1. Results are summarized in Table 1.
The test set Parzen log-likelihood bound was not used to
select among model architectures, but visual inspection
of samples generated did guide the preliminary search
reported here. Optimization hyper-parameters (learning
rate, momentum, and learning rate reduction schedule)
were selected based on the reconstruction log-likelihood
training objective. The Parzen log-likelihood bound

1However, in this paper, to be consistent with the numbers
given in Bengio et al. (2013c) we used a Gaussian Parzen density,
which (in addition to being lower rather than upper bounds) makes
the numbers not comparable with the AIS log-likelihood upper
bounds for binarized images reported in some papers for the same
data.
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obtained with a two-layer model on MNIST is 214 (±
standard error of 1.1), while the log-likelihood bound
obtained by a single-layer model (regular denoising
auto-encoder, DAE in the table) is substantially worse, at
-152±2.2. In comparison, Bengio et al. (2013c) report a
log-likelihood bound of -244±54 for RBMs and 138±2
for a 2-hidden layer DBN, using the same setup. We have
also evaluated a 3-hidden layer DBM (Salakhutdinov &
Hinton, 2009), using the weights provided by the author,
and obtained a Parzen log-likelihood bound of 32±2. See
http://www.mit.edu/˜rsalakhu/DBM.html
for details. Figure 6 shows two runs of consecutive sam-
ples from this trained model, illustrating that it mixes quite
well (better than RBMs) and produces rather sharp digit
images. The figure shows that it can also stochastically
complete missing values: the left half of the image was
initialized to random pixels and the right side was clamped
to an MNIST image. The Markov chain explores plausible
variations of the completion according to the trained
conditional distribution.

A smaller set of experiments was also run on TFD, yielding
for a GSN a test set Parzen log-likelihood bound of 1890
±29. The setup is exactly the same and was not tuned after
the MNIST experiments. A DBN-2 yields a Parzen log-
likelihood bound of 1908 ±66, which is undistinguishable
statistically, while an RBM yields 604 ± 15. A run of con-
secutive samples from the GSN-3 model are shown in Fig-
ure 8.
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Figure 6. These are expanded plots of those in Figure 3. Top: two runs of consecutive samples (one row after the other) generated from
a 2-layer GSN model, showing that it mixes well between classes and produces nice and sharp images. Figure 3 contained only one in
every four samples, whereas here we show every sample. Bottom: conditional Markov chain, with the right half of the image clamped
to one of the MNIST digit images and the left half successively resampled, illustrating the power of the trained generative model to
stochastically fill-in missing inputs. Figure 3 showed only 13 samples in each chain; here we show 26.
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Figure 7. Left: consecutive GSN samples obtained after 10 training epochs. Right: GSN samples obtained after 25 training epochs. This
shows quick convergence to a model that samples well. The samples in Figure 6 are obtained after 600 training epochs.

Figure 8. Consecutive GSN samples from a 3-layer model trained on the TFD dataset. At the end of each row, we show the nearest
example from the training set to the last sample on that row to illustrate that the distribution is not merely copying the training set.


