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Model AFLW AFW
SumNet (4 branch) 6.44 6.78
SumNet (5 branch) 6.42 6.53
SumNet (6 branch) 6.34 6.48
SumNet (5 branch - occlusion) 6.29 6.34
SumNet (6 branch - occlusion) 6.27 6.33
RCN (4 branch) 6.37 6.43
RCN (5 branch) 6.11 6.05
RCN (6 branch) 6.00 5.98
RCN (7 branch) 6.17 6.12
RCN (5 branch - occlusion) 5.65 5.44
RCN (6 branch - occlusion) 5.60 5.36

RCN (7 branch - occlusion) 5.76 5.55
RCN (6 branch - occlusion - skip) 5.63 5.56

Table 2. SumNet and RCN performance with different number of
branches, occlusion preprocessing and skip connections.

Model AFLW AFW
TSPM [45] 15.9 14.3
CDM [38] 13.1 11.1
ESR [6] 12.4 10.4

RCPR [5] 11.6 9.3
SDM [35] 8.5 8.8

TCDCN [41] 8.0 8.2
TCDCN baseline (our implementation) 7.60 7.87

SumNet (FCN/HC) baseline (this) 6.27 6.33
RCN (this) 5.60 5.36

Table 3. Facial landmark mean error normalized by interocular dis-
tance on AFW and AFLW sets (as a percent; lower is better).11

model on 5 keypoint AFLW [15] and AFW [45] sets, and
applied the same pre-processing as our other experiments.
Through hyper-parameter search, we even improved upon
the AFLW and AFW results reported in [41]. Table 3 com-
pares RCN with other models. Especially, it improves the
SumNet baseline, which is equivalent to FCN and Hyper-
column models, and it also converges faster. The SumNet
baseline is also provided by this paper and to the best of our
knowledge this is the first application of any such coarse-to-
fine convolutional architecture to the facial keypoint prob-
lem. Figure 6 compares TCDCN with SumNet and RCN
models, on some difficult samples reported in [41].

300W dataset [20]: The RCN model that achieved the
best result on the validation set, contains 5 branches with 64
channels for all layers (higher capacity is needed to extract
features for more keypoints) and 2 extra convolutional lay-
ers with 1 ⇥ 1 kernel size in the finest branch right before
applying the softmax. Table 4 compares different models on
all keypoints (68) and a subset of keypoints (49) reported in
[32]. The denoising model is trained by randomly choos-
ing 35 keypoints in each image and jittering them (chang-
ing their location uniformly to any place in the 2D map).
It improves the RCN’s prediction by considering how loca-
tions of different keypoints are inter-dependent. Figure 7
compares the output of RCN, the denoising model and the
joint model, showing how the keypoint distribution model-
ing can reduce the error. We only trained RCN on the 2834

Model #keypoints Common IBUG Fullset
PO-CR [32] 4.00 6.82 4.56
RCN (this) 49 2.64 5.10 3.88

RCN + denoising
keypoint model (this) 2.59 4.81 3.76

CDM [38] 10.10 19.54 11.94
DRMF [2] 6.65 19.79 9.22
RCPR [5] 6.18 17.26 8.35

GN-DPM [33] 5.78 - -
CFAN [40] 5.50 16.78 7.69

ESR [6] 5.28 17.00 7.58
SDM [35] 68 5.57 15.40 7.50
ERT [7] - - 6.40

LBF [18] 4.95 11.98 6.32
CFSS[44] 4.73 9.98 5.76

TCDCN

† [42] 4.80 8.60 5.54
RCN (this) 4.70 9.00 5.54

RCN + denoising
keypoint model (this) 4.67 8.44 5.41

Table 4. Facial landmark mean error normalized by interocular dis-
tance on 300W test sets (as a percent; lower is better). 11

images in the train-set. No extra data is taken to pre-train or
fine-tune the model 12. The current state-of-the-art model
without any extra data† is CFSS[44]. We reduce the error
by 15% on the IBUG subset compared to CFSS.

6. Conclusion

In this paper we have introduced the Recombinator Net-
works architecture for combining coarse maps of pooled
features with fine non-pooled features in convolutional
neural networks. The model improves upon previous
summation-based approaches by feeding coarser branches
into finer branches, allowing the finer resolutions to learn
upon the features extracted by coarser branches. We find
that this new architecture leads to both reduced training time
and increased facial keypoint prediction accuracy. We have
also proposed a denoising model for keypoints which in-
volves explicit modeling of valid spatial configurations of
keypoints. This allows our complete approach to deal with
more complex cases such as those with occlusions.
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Nature et Technologies (FRQNT) for a doctoral research
scholarship (B2) grant during 2014 and 2015 (SH) and the
NASA Space Technology Research Fellowship (JY).

12We only jittered the train-set images by random scaling, translation
and rotation similar to the 5 keypoint dataset.

† TCDCN [42] uses 20,000 extra dataset for pre-training.

Model AFLW AFW
SumNet (4 branch) 6.44 6.78
SumNet (5 branch) 6.42 6.53
SumNet (6 branch) 6.34 6.48
SumNet (5 branch - occlusion) 6.29 6.34
SumNet (6 branch - occlusion) 6.27 6.33
RCN (4 branch) 6.37 6.43
RCN (5 branch) 6.11 6.05
RCN (6 branch) 6.00 5.98
RCN (7 branch) 6.17 6.12
RCN (5 branch - occlusion) 5.65 5.44
RCN (6 branch - occlusion) 5.60 5.36

RCN (7 branch - occlusion) 5.76 5.55
RCN (6 branch - occlusion - skip) 5.63 5.56
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model on 5 keypoint AFLW [15] and AFW [45] sets, and
applied the same pre-processing as our other experiments.
Through hyper-parameter search, we even improved upon
the AFLW and AFW results reported in [41]. Table 3 com-
pares RCN with other models. Especially, it improves the
SumNet baseline, which is equivalent to FCN and Hyper-
column models, and it also converges faster. The SumNet
baseline is also provided by this paper and to the best of our
knowledge this is the first application of any such coarse-to-
fine convolutional architecture to the facial keypoint prob-
lem. Figure 6 compares TCDCN with SumNet and RCN
models, on some difficult samples reported in [41].

300W dataset [20]: The RCN model that achieved the
best result on the validation set, contains 5 branches with 64
channels for all layers (higher capacity is needed to extract
features for more keypoints) and 2 extra convolutional lay-
ers with 1 ⇥ 1 kernel size in the finest branch right before
applying the softmax. Table 4 compares different models on
all keypoints (68) and a subset of keypoints (49) reported in
[32]. The denoising model is trained by randomly choos-
ing 35 keypoints in each image and jittering them (chang-
ing their location uniformly to any place in the 2D map).
It improves the RCN’s prediction by considering how loca-
tions of different keypoints are inter-dependent. Figure 7
compares the output of RCN, the denoising model and the
joint model, showing how the keypoint distribution model-
ing can reduce the error. We only trained RCN on the 2834
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images in the train-set. No extra data is taken to pre-train or
fine-tune the model 12. The current state-of-the-art model
without any extra data† is CFSS[44]. We reduce the error
by 15% on the IBUG subset compared to CFSS.

6. Conclusion

In this paper we have introduced the Recombinator Net-
works architecture for combining coarse maps of pooled
features with fine non-pooled features in convolutional
neural networks. The model improves upon previous
summation-based approaches by feeding coarser branches
into finer branches, allowing the finer resolutions to learn
upon the features extracted by coarser branches. We find
that this new architecture leads to both reduced training time
and increased facial keypoint prediction accuracy. We have
also proposed a denoising model for keypoints which in-
volves explicit modeling of valid spatial configurations of
keypoints. This allows our complete approach to deal with
more complex cases such as those with occlusions.
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5.1. Evaluation on SumNet and RCN

We evaluate RCN on the 5-keypoint test sets. To avoid
overfitting and improve performance, we applied online
data augmentation to the 9,000 MTFL train set using ran-
dom scale, rotation, and translation jittering7. We prepro-
cessed images by making them gray-scale and applying lo-
cal contrast normalization 8. In Figure S1, we show a visu-
alization of the contribution of each branch of the SumNet
to the final predictions: the coarsest layer provides robust
but blurry keypoint locations, while the finest layer gives
detailed face information but suffers from many false pos-
itives. However, the sum of branches in SumNet and the
finest branch in RCN make precise predictions.

Since the test sets contain more extreme occlusion and
lighting conditions compared to the train set, we applied a
preprocessing to the train set to bring it closer to the test set
distribution. In addition to the jittering, we found it helpful
to occlude images in the training set with randomly placed
black rectangles9 at each training iteration. This trick forced
the convnet models to use more global facial components to
localize the keypoints and not rely as much on the features
around the keypoints, which in turn, made it more robust
against occlusion and lighting contrast in the test set. Figure
3 shows the effects of this occlusion when used to train the
SumNet and RCN models on randomly drawn samples. The
samples show for most of the test set examples the models
do a good prediction. Figure 4 shows some hand-picked
examples from the test sets, to show extreme expression,
occlusion and contrast that are not captured in the random
samples of Figure 3. Figure 5 similarly uses some manually
selected examples to show the benefits of using occlusion.

To evaluate how much each branch contributes to the
overall performance of the model, we trained models ex-
cluding some branches and report the results in Table 1. The
finest layer on its own does a poor job due to many false
positives, while the coarsest layer on its own does a reason-
able job, but still lacks high accuracy. One notable result

7We jittered data separately in each epoch, whose parameters were uni-
formly sampled in the following ranges (selected based on the validation
set performance): Translation and Scaling: [-10%, +10%] of face bound-
ing box size; Rotation: [-40, +40] degrees.

8RGB images performed worse in our experiments.
9Each image was occluded with one black (zeros) rectangle, whose size

was drawn uniformly in the range [20, 50] pixels. It’s location was drawn
uniformly over the entire image.

is that using only the coarsest and finest branches together
produces reasonable performance. However, the best per-
formance is achieved by using all branches, merging four
resolutions of coarse, medium, and fine information. We

SumNet RCN
Mask AFLW AFW AFLW AFW

1, 0, 0, 0 10.54 10.63 10.61 10.89
0, 1, 0, 0 11.28 11.43 11.56 11.87
1, 1, 0, 0 9.47 9.65 9.31 9.44
0, 0, 1, 0 16.14 16.35 15.78 15.91
0, 0, 0, 1 45.39 47.97 46.87 48.61
0, 0, 1, 1 13.90 14.14 12.67 13.53
0, 1, 1, 1 7.91 8.22 7.62 7.95
1, 0, 0, 1 6.91 7.51 6.79 7.27
1, 1, 1, 1 6.44 6.78 6.37 6.43

Table 1. The performance of SumNet and RCN trained with masks
applied to different branches. A mask value of 1 indicates the
branch is included in the model and 0 indicates it is omitted (as a
percent; lower is better). In SumNet model mask 0 indicates no
contribution from that branch to the summation of all branches,
while in RCN, if a branch is omitted, the previous coarse branch
is upsampled to the following fine branch. The mask numbers are
ordered from the coarsest branch to the finest branch.

also experimented with adding extra branches, getting to a
coarser resolution of 5 ⇥ 5 in the 5 branch model, 2 ⇥ 2
in the 6 branch model and 1 ⇥ 1 in the 7 branch model. In
each branch, the same number of convolutional layers with
the same kernel size is applied,10 and all new layers have
48 channels. The best performing model, as shown in Table
2, is RCN with 6 branches. Comparing RCN and SumNet
training, RCN converges faster. Using early stopping and
without occlusion pre-processing, RCN requires on average
200 epochs to converge (about 4 hours on a NVidia Tesla
K20 GPU), while SumNet needs on average more than 800
epochs (almost 14 hours). RCN’s error on both test sets
drops below 7% on average after only 15 epochs (about 20
minutes), while SumNet needs on average 110 epochs (al-
most 2 hours) to get to this error. Using occlusion prepro-
cessing increases these times slightly but results in lower
test error. At test time, a feedforward pass on a K20 GPU
takes 2.2ms for SumNet and 2.5ms for RCN per image in
Theano [4]. Table 2 shows occlusion pre-processing sig-
nificantly helps boost the accuracy of RCN, while slightly
helping SumNet. We believe this is due to global informa-
tion flow from coarser to finer branches in RCN.

5.2. Comparison with other models

AFLW and AFW datasets: We first re-implemented the
TCDCN model [41], which is the current state of the art

10A single exception is that when the 5 ⇥ 5 resolution map is reduced
to 2 ⇥ 2, we apply 3 ⇥ 3 pooling with stride 2 instead of the usual 2 ⇥ 2
pooling, to keep the resulting map left-right symmetric.

11SumNet and RCN models are trained using occlusion preprocessing.

Model AFLW AFW
SumNet (4 branch) 6.44 6.78
SumNet (5 branch) 6.42 6.53
SumNet (6 branch) 6.34 6.48
SumNet (5 branch - occlusion) 6.29 6.34
SumNet (6 branch - occlusion) 6.27 6.33
RCN (4 branch) 6.37 6.43
RCN (5 branch) 6.11 6.05
RCN (6 branch) 6.00 5.98
RCN (7 branch) 6.17 6.12
RCN (5 branch - occlusion) 5.65 5.44
RCN (6 branch - occlusion) 5.60 5.36

RCN (7 branch - occlusion) 5.76 5.55
RCN (6 branch - occlusion - skip) 5.63 5.56

Table 2. SumNet and RCN performance with different number of
branches, occlusion preprocessing and skip connections.

Model AFLW AFW
TSPM [45] 15.9 14.3
CDM [38] 13.1 11.1
ESR [6] 12.4 10.4

RCPR [5] 11.6 9.3
SDM [35] 8.5 8.8

TCDCN [41] 8.0 8.2
TCDCN baseline (our implementation) 7.60 7.87

SumNet (FCN/HC) baseline (this) 6.27 6.33
RCN (this) 5.60 5.36

Table 3. Facial landmark mean error normalized by interocular dis-
tance on AFW and AFLW sets (as a percent; lower is better).11

model on 5 keypoint AFLW [15] and AFW [45] sets, and
applied the same pre-processing as our other experiments.
Through hyper-parameter search, we even improved upon
the AFLW and AFW results reported in [41]. Table 3 com-
pares RCN with other models. Especially, it improves the
SumNet baseline, which is equivalent to FCN and Hyper-
column models, and it also converges faster. The SumNet
baseline is also provided by this paper and to the best of our
knowledge this is the first application of any such coarse-to-
fine convolutional architecture to the facial keypoint prob-
lem. Figure 6 compares TCDCN with SumNet and RCN
models, on some difficult samples reported in [41].

300W dataset [20]: The RCN model that achieved the
best result on the validation set, contains 5 branches with 64
channels for all layers (higher capacity is needed to extract
features for more keypoints) and 2 extra convolutional lay-
ers with 1 ⇥ 1 kernel size in the finest branch right before
applying the softmax. Table 4 compares different models on
all keypoints (68) and a subset of keypoints (49) reported in
[32]. The denoising model is trained by randomly choos-
ing 35 keypoints in each image and jittering them (chang-
ing their location uniformly to any place in the 2D map).
It improves the RCN’s prediction by considering how loca-
tions of different keypoints are inter-dependent. Figure 7
compares the output of RCN, the denoising model and the
joint model, showing how the keypoint distribution model-
ing can reduce the error. We only trained RCN on the 2834

Model #keypoints Common IBUG Fullset
PO-CR [32] 4.00 6.82 4.56
RCN (this) 49 2.64 5.10 3.88

RCN + denoising
keypoint model (this) 2.59 4.81 3.76

CDM [38] 10.10 19.54 11.94
DRMF [2] 6.65 19.79 9.22
RCPR [5] 6.18 17.26 8.35

GN-DPM [33] 5.78 - -
CFAN [40] 5.50 16.78 7.69

ESR [6] 5.28 17.00 7.58
SDM [35] 68 5.57 15.40 7.50
ERT [7] - - 6.40

LBF [18] 4.95 11.98 6.32
CFSS[44] 4.73 9.98 5.76

TCDCN

† [42] 4.80 8.60 5.54
RCN (this) 4.70 9.00 5.54

RCN + denoising
keypoint model (this) 4.67 8.44 5.41

Table 4. Facial landmark mean error normalized by interocular dis-
tance on 300W test sets (as a percent; lower is better). 11

images in the train-set. No extra data is taken to pre-train or
fine-tune the model 12. The current state-of-the-art model
without any extra data† is CFSS[44]. We reduce the error
by 15% on the IBUG subset compared to CFSS.

6. Conclusion

In this paper we have introduced the Recombinator Net-
works architecture for combining coarse maps of pooled
features with fine non-pooled features in convolutional
neural networks. The model improves upon previous
summation-based approaches by feeding coarser branches
into finer branches, allowing the finer resolutions to learn
upon the features extracted by coarser branches. We find
that this new architecture leads to both reduced training time
and increased facial keypoint prediction accuracy. We have
also proposed a denoising model for keypoints which in-
volves explicit modeling of valid spatial configurations of
keypoints. This allows our complete approach to deal with
more complex cases such as those with occlusions.
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XXXXXXXXXXFeatures
Models Efficient

Localization [31]
Deep

Cascade [28]
Hyper-

columns [13]
FCN
[17]

RCN
(this)

Coarse features: hard crop or soft combination? Hard Hard Soft Soft Soft
Learned coarse features fed into finer branches? No No No No Yes

Table 5. Comparison of multi-resolution architectures. The Efficient Localization and Deep Cascade models use coarse features to crop
images (or fine layer features), which are then fed into fine models. This process saves computation when dealing with high-resolution
images but at the expense of making a greedy decision halfway through the model. Soft models merge local and global features of the entire
image and do not require a greedy decision. The Hypercolumn and FCN models propagate all coarse information to the final layer but
merge information via addition instead of conditioning fine features on coarse features. The Recombinator Networks (RCN), in contrast,
injects coarse features directly into finer branches, allowing the fine computation to be tuned by (conditioned on) the coarse information.
The model is trained end-to-end and results in learned coarse features which are tuned directly to support the eventual fine predictions.

Figure 2. Denoising / joint keypoint model. The Recombinator Networks (RCN) and the keypoint location denoising models are trained
separately. At test time, the keypoint hard prediction of RCN is first injected into the denoising model as one-hot maps. Then the pre-
softmax values computed by the RCN and the denoising models are summed and pass through a final softmax to predict keypoint locations.

Figure 3. Keypoint predictions on random test set images from easy (left) to hard (right). Each column shows predictions of following
models from top to bottom: SumNet, SumNet with occlusion, RCN, RCN with occlusion (all models have 5 branches). We note for each
test set image (including both AFLW and AFW) the average error over the four models and use this as a notion of that image’s difficulty.
We then sort all images by difficulty and draw a random image from percentile bins, using the bin boundaries noted above the images.
To showcase the models’ differing performance, we show only a few easier images on the left side and focus more on the hardest couple
percent of images toward the right side. The value on the left is the average error of these samples per model (much higher than the results
reported in Table 3 because of the skew toward difficult images). The yellow line connects the true keypoint location (green) to the model’s
prediction (red). Dots are small to avoid covering large regions of the image. Best viewed with zoom in color. Figure S2 shows the
performance of these four models as the difficulty of the examples increase.

Cost: 

marized in Table 5. U-Net [19] is another model that merges
features across multiple levels and has a very similar archi-
tecture to Recombinator Networks. The two models have
been developed independently and were designed for differ-
ent problems2. Note that none of these models use a learned
denoising post-processing as we do (see section 4).

3. Summation versus Recombinator Networks

In this section we describe our baseline SumNet model
based on a common architectural design where information
from different levels of granularity are merged just prior to
predictions being made. We contrast this with the Recom-
binator Networks architecture.

3.1. Summation based Networks

The SumNet architecture, shown in Figure 1(left), adds
to the usual bottom to top convolution and spatial pool-
ing, or “trunk”, a horizontal left-to-right “branch” at each
resolution level. While spatial pooling progressively re-
duces the resolution as we move “up” the network along
the trunk, the horizontal branches only contains full con-
volutions and element-wise non-linearities, with no spatial
pooling, so that they can preserve the spatial resolution at
that level while doing further processing. The output of
the finest resolution branch only goes through convolutional
layers. The finest resolution layers keep positional informa-
tion and use it to guide the coarser layers within the patch
that they cannot have any preference, while the coarser res-
olution layers help finer layers to get rid of false positives.
The architecture then combines the rightmost low resolution
output of all horizontal branches, into a single high resolu-
tion prediction, by first up-sampling3 them all to the model’s
input image resolution (80 ⇥ 80 for our experiments) and
then taking a weighted sum to yield the pre-softmax val-
ues. Finally, a softmax function is applied to yield the fi-
nal location probability map for each keypoint. Formally,
given an input image x, define the trunk of the network as
a sequence of blocks of traditional groups of convolution,
pooling and decimation operations. Starting from the layer
yielding the coarsest scale feature maps we call the outputs
of R such blocks T

(1)
, . . . , T

(R). At each level r of the
trunk we have a horizontal branch that takes T (r) as its in-
put and consists of a sequence of convolutional layers with
no subsampling. The output of such a branch is a stack of
K feature maps, one for each of the K target keypoints, at
the same resolution as its input T (r), and we denote this
output as branch(T

(r)
). It is then upsampled up[⇥F ] by

some factor F which returns the feature map to the original
resolution of the input image. Let these upsampled maps
be M

(1)
1 , . . . ,M

(R)
K where M

(r)
k is the score map given by

2For keypoint localization, we apply the softmax spatially i.e. across
possible spatial locations, whereas for segmentation [13, 17, 19] it is ap-
plied across all possible classes for each pixel.

3Upsampling can be performed either by tiling values or by using bilin-
ear interpolation. We found bilinear interpolation degraded performance in
some cases, so we instead used the simpler tiling approach.

the r

th branch to the k

th keypoint (left eye, right eye, . . .).
Each such map M

(r)
k is a matrix of the same resolution as

the image fed as input (i.e. 80 ⇥ 80). The score ascribed
by branch r for keypoint k being at coordinate i, j is given
by M

(r)
k,i,j . The final probability map for the location Yk of

keypoint k is given by a softmax over all possible locations.
We can therefore write the model as

M

(1)
= up[⇥2R�1](branch(T

(1)
))

M

(2)
= up[⇥2R�2](branch(T

(2)
))

. . .

M

(R)
= branch(T

(R)
)

P (Yk|X = x) = softmax

⇣ RX

r=1

↵rkM
(r)
k

⌘
, (1)

where ↵rk is a 2D matrix that gives a weight to every
pixel location i, j of keypoint k in branch r. The weighted
sum of features over all branches taken here is equivalent to
concatenating the features of all branches and multiplying
them in a set of weights, which results in one feature map
per keypoint. This architecture is trained globally using
gradient backpropagation to minimize the sum of negated
conditional log probabilities of all N training (input-image,
keypoint-locations) pairs, for all K keypoints (x

(n)
, y

(n)
k ),

with an additional regularization term for the weights ; i.e.
we search for network parameters W that minimize 4

L(W) =

1

N

NX

n=1

KX

k=1

� logP (Yk = y

(n)
k |X = x

(n)
) + �kWk2.

(2)

3.2. The Recombinator Networks

In the SumNet model, different branches can only com-
municate through the updates received from the output layer
and the features are merged linearly through summation. In
the Recombinator Networks (RCN) architecture, as shown
in Figure 1(right), instead of taking a weighted sum of the
upsampled feature maps in each branch and then passing
them to a softmax, the output of each branch is upsampled,
then concatenated with the next level branch with one de-
gree of finer resolution. In contrast to the SumNet model,
each branch does not end in K feature maps. The infor-
mation stays in the form of a keypoint independent feature
map. It is only at the end of the R

th branch that feature
maps are converted into a per-keypoint scoring represen-
tation that has the same resolution as the input image, on
which a softmax is then applied. As a result of RCN’s dif-
ferent architecture, branches pass more information to each
other during training, such that convolutional layers in the
finer branches get inputs from both coarse and fine layers,
letting the network learn how to combine them non-linearly
to maximize the log likelihood of the keypoints given the

4 We also tried L2 distance cost between true and estimated keypoints
(as a regression problem) and got worse results. This may be due to the
fact that a softmax probability map can be multimodal , while L2 distance
implicitly corresponds to likelihood of a unimodal isotropic Gaussian.

tance between the eyes (interocular distance) is used:

error =
1

KN

NX

n=1

KX

k=1

q
(w

(n)
k � w̃

(n)
k )2 + (h

(n)
k � h̃

(n)
k )2

D(n)
, (4)

where K is the number of keypoints, N is the total num-
ber of images, D(n) is the interocular distance in image n.
(w

(n)
k , h

(n)
k ) and (w̃

(n)
k ,

˜

h

(n)
k ) represent the true and esti-

mated coordinates for keypoint k in image n, respectively.

5.1. Evaluation on SumNet and RCN

We evaluate RCN on the 5-keypoint test sets. To avoid
overfitting and improve performance, we applied online
data augmentation to the 9,000 MTFL train set using ran-
dom scale, rotation, and translation jittering7. We prepro-
cessed images by making them gray-scale and applying lo-
cal contrast normalization 8. In Figure S1, we show a visu-
alization of the contribution of each branch of the SumNet
to the final predictions: the coarsest layer provides robust
but blurry keypoint locations, while the finest layer gives
detailed face information but suffers from many false pos-
itives. However, the sum of branches in SumNet and the
finest branch in RCN make precise predictions.

Since the test sets contain more extreme occlusion and
lighting conditions compared to the train set, we applied a
preprocessing to the train set to bring it closer to the test set
distribution. In addition to the jittering, we found it helpful
to occlude images in the training set with randomly placed
black rectangles9 at each training iteration. This trick forced
the convnet models to use more global facial components to
localize the keypoints and not rely as much on the features
around the keypoints, which in turn, made it more robust
against occlusion and lighting contrast in the test set. Figure
3 shows the effects of this occlusion when used to train the
SumNet and RCN models on randomly drawn samples. The
samples show for most of the test set examples the models
do a good prediction. Figure 4 shows some hand-picked
examples from the test sets, to show extreme expression,
occlusion and contrast that are not captured in the random
samples of Figure 3. Figure 5 similarly uses some manually
selected examples to show the benefits of using occlusion.

To evaluate how much each branch contributes to the
overall performance of the model, we trained models ex-
cluding some branches and report the results in Table 1. The
finest layer on its own does a poor job due to many false
positives, while the coarsest layer on its own does a reason-
able job, but still lacks high accuracy. One notable result

7We jittered data separately in each epoch, whose parameters were uni-
formly sampled in the following ranges (selected based on the validation
set performance): Translation and Scaling: [-10%, +10%] of face bound-
ing box size; Rotation: [-40, +40] degrees.

8RGB images performed worse in our experiments.
9Each image was occluded with one black (zeros) rectangle, whose size

was drawn uniformly in the range [20, 50] pixels. It’s location was drawn
uniformly over the entire image.

is that using only the coarsest and finest branches together
produces reasonable performance. However, the best per-
formance is achieved by using all branches, merging four
resolutions of coarse, medium, and fine information. We

SumNet RCN
Mask AFLW AFW AFLW AFW

1, 0, 0, 0 10.54 10.63 10.61 10.89
0, 1, 0, 0 11.28 11.43 11.56 11.87
1, 1, 0, 0 9.47 9.65 9.31 9.44
0, 0, 1, 0 16.14 16.35 15.78 15.91
0, 0, 0, 1 45.39 47.97 46.87 48.61
0, 0, 1, 1 13.90 14.14 12.67 13.53
0, 1, 1, 1 7.91 8.22 7.62 7.95
1, 0, 0, 1 6.91 7.51 6.79 7.27
1, 1, 1, 1 6.44 6.78 6.37 6.43

Table 1. The performance of SumNet and RCN trained with masks
applied to different branches. A mask value of 1 indicates the
branch is included in the model and 0 indicates it is omitted (as a
percent; lower is better). In SumNet model mask 0 indicates no
contribution from that branch to the summation of all branches,
while in RCN, if a branch is omitted, the previous coarse branch
is upsampled to the following fine branch. The mask numbers are
ordered from the coarsest branch to the finest branch.

also experimented with adding extra branches, getting to a
coarser resolution of 5 ⇥ 5 in the 5 branch model, 2 ⇥ 2
in the 6 branch model and 1 ⇥ 1 in the 7 branch model. In
each branch, the same number of convolutional layers with
the same kernel size is applied,10 and all new layers have
48 channels. The best performing model, as shown in Table
2, is RCN with 6 branches. Comparing RCN and SumNet
training, RCN converges faster. Using early stopping and
without occlusion pre-processing, RCN requires on average
200 epochs to converge (about 4 hours on a NVidia Tesla
K20 GPU), while SumNet needs on average more than 800
epochs (almost 14 hours). RCN’s error on both test sets
drops below 7% on average after only 15 epochs (about 20
minutes), while SumNet needs on average 110 epochs (al-
most 2 hours) to get to this error. Using occlusion prepro-
cessing increases these times slightly but results in lower
test error. At test time, a feedforward pass on a K20 GPU
takes 2.2ms for SumNet and 2.5ms for RCN per image in
Theano [4]. Table 2 shows occlusion pre-processing sig-
nificantly helps boost the accuracy of RCN, while slightly
helping SumNet. We believe this is due to global informa-
tion flow from coarser to finer branches in RCN.

5.2. Comparison with other models

AFLW and AFW datasets: We first re-implemented the
TCDCN model [41], which is the current state of the art

10A single exception is that when the 5 ⇥ 5 resolution map is reduced
to 2 ⇥ 2, we apply 3 ⇥ 3 pooling with stride 2 instead of the usual 2 ⇥ 2
pooling, to keep the resulting map left-right symmetric.

11SumNet and RCN models are trained using occlusion preprocessing.
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