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Features
Coarse features: hard crop or soft combination? Hard Hard Soft Soft | Soft
Learned coarse features fed into finer branches? No No No No Yes

Table 5. Comparison of multi-resolution architectures. The Efficient Localization and Deep Cascade models use coarse features to crop
images (or fine layer features), which are then fed into fine models. This process saves computation when dealing with high-resolution
images but at the expense of making a greedy decision halfway through the model. Soft models merge local and global features of the entire
image and do not require a greedy decision. The Hypercolumn and FCN models propagate all coarse information to the final layer but
merge information via addition instead of conditioning fine features on coarse features. The Recombinator Networks (RCN), in contrast,
injects coarse features directly into finer branches, allowing the fine computation to be tuned by (conditioned on) the coarse information.
The model is trained end-to-end and results in learned coarse features which are tuned directly to support the eventual fine predictions.
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