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Abstract

Object detection performance, as measured on the
canonical PASCAL VOC dataset, has plateaued in the last
few years. The best-performing methods are complex en-
semble systems that typically combine multiple low-level
image features with high-level context. In this paper, we
propose a simple and scalable detection algorithm that im-
proves mean average precision (mAP) by more than 30%
relative to the previous best result on VOC 2012—achieving
a mAP of 53.3%. Our approach combines two key insights:
(1) one can apply high-capacity convolutional neural net-
works (CNNs) to bottom-up region proposals in order to
localize and segment objects and (2) when labeled training
data is scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, yields a signifi-
cant performance boost. Since we combine region propos-
als with CNNs, we call our method R-CNN: Regions with
CNN features. We also present experiments that provide
insight into what the network learns, revealing a rich hier-
archy of image features. Source code for the complete sys-
tem is available at http://www.cs.berkeley.edu/
˜rbg/rcnn.

1. Introduction

Features matter. The last decade of progress on various
visual recognition tasks has been based considerably on the
use of SIFT [27] and HOG [7]. But if we look at perfor-
mance on the canonical visual recognition task, PASCAL
VOC object detection [13], it is generally acknowledged
that progress has been slow during 2010-2012, with small
gains obtained by building ensemble systems and employ-
ing minor variants of successful methods.

SIFT and HOG are blockwise orientation histograms,
a representation we could associate roughly with complex
cells in V1, the first cortical area in the primate visual path-
way. But we also know that recognition occurs several
stages downstream, which suggests that there might be hier-
archical, multi-stage processes for computing features that
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Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [34] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.

are even more informative for visual recognition.
Fukushima’s “neocognitron” [17], a biologically-

inspired hierarchical and shift-invariant model for pattern
recognition, was an early attempt at just such a process.
The neocognitron, however, lacked a supervised training al-
gorithm. LeCun et al. [24] provided the missing algorithm
by showing that stochastic gradient descent, via backprop-
agation, can train convolutional neural networks (CNNs), a
class of models that extend the neocognitron.

CNNs saw heavy use in the 1990s (e.g., [25]), but then
fell out of fashion, particularly in computer vision, with the
rise of support vector machines. In 2012, Krizhevsky et al.
[23] rekindled interest in CNNs by showing substantially
higher image classification accuracy on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [9, 10].
Their success resulted from training a large CNN on 1.2
million labeled images, together with a few twists on Le-
Cun’s CNN (e.g., max(x, 0) rectifying non-linearities and
“dropout” regularization).

The significance of the ImageNet result was vigorously
debated during the ILSVRC 2012 workshop. The central
issue can be distilled to the following: To what extent do
the CNN classification results on ImageNet generalize to
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• Measure general to specific transition layer by layer

• Transferability governed by:

• lost co-adaptations

• specificity

• difference between base and target dataset

• Fine-tuning helps even on large target dataset
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