Two small ideas:
Approximate LCA, Computational Ethics

/& MLC Research Jam
28 May 2025

Jason Yosinski

jason@yosinski.com



arXiv:1909.01440v1 [cs.LG] 3 Sep 2019

|dea #1: Approximate LCA (Loss Change Allocation

LCA: Loss Change Allocation for
Neural Network Training

Janice Lan Rosanne Liun Hattie Zhou Jason Yosinski
Uber Al Uber Al Uber Uber Al
janlanCuber.com rosanneQuber.com hattieQuber.com yosinski@uber.com

Abstract

Neural networks enjoy widespread use, but many aspects of their training, represen-
tation, and operation are poorly understood. In particular, our view into the training
process is limited, with a single scalar loss being the most common viewport into
this high-dimensional, dynamic process. We propose a new window into training
called Loss Change Allocation (LCA), in which credit for changes to the network
loss is conservatively partitioned to the parameters. This measurement is accom-

plished by p the p of an appi ate path integral along the
training trajectory using a Runge-Kutta integrator. This rich view shows which
ara ar ible f¢ ing or i ing the loss during training,

p ¢ resp

or which parameters “help” or “hurt” the network’s learning, respectively. LCA
may be summed over training iterations and/or over neurons, channels, or layers
for increasingly coarse views. This new measurement device produces several
insights into training. (1) We find that barely over 50% of parameters help during
any given iteration. (2) Some entire layers hurt overall, moving on average against
the training gradient, a phenomenon we hypothesize may be due to phase lag in
an oscillatory training process. (3) Finally, increments in learning proceed in a
synchronized manner across layers, often peaking on identical iterations.

1 Introduction

In the common stochastic gradient descent (SGD) training setup, a parameterized model is iteratively
updated using gradients computed from mini-batches of data chosen from some training set. Unfortu-
nately, our view into the high-dimensional, dynamic training process is often limited to watching
a scalar loss quantity decrease over time. There has been much research attempting to understand
neural network training, with some work studying geometric properties of the objective function
[7. 20,27, 24,121], properties of whole networks and individual layers at convergence [4!(7, 15, 34],
and neural network training from an optimization perspective [29,/4,/5, 3, 19]. This body of work in
aggregate provides rich insight into the loss landscape arising from typical combinations of neural
network architectures and datasets. Literature on the dynamics of the training process itself is more
sparse, but a few salient works examine the learning phase through the diagonal of the Hessian,
mutual information between input and output, and other measures [1, 25,14].

In this paper we propose a simple approach to inspecting training in progress by decomposing changes
in the overall network loss into a per-p Loss Change Alle ion or LCA. The p for
computing LCA is straightforward, but to our knowledge it has not previously been employed for
investigating network training. We begin by defining this measure in more detail, and then apply it to
reveal several interesting properties of neural network training. Our contributions are as follows:

1. We define the Loss Change Allocation as a p per-iteration d position
of changes to the overall network loss (Section|2). Exploring network training with this
measurement tool uncovers the following insights.

33rd Conf on Neural i ing Systems (NeurIPS 2019), Vancouver, Canada.

loss { sradient t . T . T
Q, ke m ks 0 prmmmmaae 0 —%
0

¥

9 dim-2

cumul cumul

6 dim-1 LCA LCA
e

(b) 6 dim-1 (c) 8 dim-2

Figure 1: (a) Illustration of this paper’s method on a toy two-dimensional loss surface. We allocate
credit for changes to the model’s training loss to individual parameters (b) # dim-1 and (c) # dim-2
by multiplying parameter motion with the corresponding individual p of the gradient of
the training set. This partitions changes to the loss into individual Loss Change Allocation (LCA)
components allows us to measure which parameters learn at each timestep, providing a rich view into
the training process. In the example depicted, although both parameters move, the second parameter
captures all the credit, as only its component of the gradient is non-zero.

2. Learning is very noisy, with only slightly over half of parameters helping to reduce loss on
any given iteration (Section[})A

w

Some entire layers consistently drift in the wrong direction during training, on average
moving against the gradient. We propose and test an explanation that these layers are
slightly out of phase, lagging behind other layers during training (Section|4).

>

We contribute new evidence to suggest that the learning progress is, on a microscopic level,
synchronized across layers, with small peaks of learning often occurring at the same iteration
for all layers (Section|5).

2 The Loss Change Allocation approach

‘We begin by defining the Loss Change Allocation approach in more detail. Consider a parameterized
training scenario where a model starts at parameter value 6 and ends at parameter value 67 after
training. The training process entails traversing some path P along the surface of a loss landscape
from g to O7. There are several loss landscapes one might consider; in this paper we analyze the
training process, so we measure motion along the loss with respect to the entire training set, here
denoted simply L(#). We analyze the loss landscape of the training set instead of the validation
set because we aim to measure training, not training confounded with issues of memorization vs.
generalization (though the latter certainly should be the topic of future studies).

The approach in this paper derives from a straightforward application of the fundamental theorem of
calculus to a path integral along the loss landscape:

L(67) — L(6o) :/C(Vab(ﬂ)-df?) [¢)

where C is any path from 6, to 6 and (-,-) is the dot product. This equation states that the change in
loss from 6, to 67 may be calculated by integrating the dot product of the loss gradient and parameter
motion along a path from 6, to 7. Because V4L(f) is the gradient of a function and thus is a
conservative field, any path from 6, to 67 may be used; in this paper we consider the path taken by
the optimizer during the course of training. We may approximate this path integral from 6, to 67 by
using a series of first order Taylor approximations along the training path. If we index training steps
byt € [0,1,..., T}, the first order approximation for the change in loss during one step of training is
the following, rewritten as a sum of its individual components:

L(0r11) — L(6:) = (VoL(6e), Ori1 — br) 2)

K-1 K-1
= > (VoL(6) (60, — 67) := Y A [©)

i=0 i=0
where VL (6,) represents the gradient of the loss of the whole training set w.r.t. 6 evaluated at 6,
v represents the i-th element of a vector v, and the parameter vector § contains K elements. Note
that while we evaluate model learning by tracking progress along the training set loss landscape

@ See training in progress!
@ Very slow

If we use aggressive
approximation to make it faster,

Janice Lan, Hattie Zhou, Rosanne Liu, Jason
Yosinski. LCA: Loss Change Allocation for Neural
Network Training, NeurlPS 2019,

can it still provide useful
visibility?



| CA: Loss Change Allocation for Neural Network Training

loss I gradient A t I A t I
() 0 & >
H - =p path taken from 6, to 0; KR
9 O cumul cumul \o\
: LCA LCA ~~"~...
5 T =-9
S 0 dim-2 0 dim-1 0 dim-2
' '} < .’ / >
“ 9 e 0.0006 -
!{ T TOy data 0.0004 - o
# dim-1 I g A
Real data s -
Loss landscape of LC =
entire train set 000027
—0.0004 -
—0.0006 -
Simple approach — New visibility into training 00008 - Training iteration

0 1000 2000 3000 4000 5000
Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

lteration O

m— train loss

""""""""""""""""

/84

100

50

10

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

FC 1 _ FC 2 FC 3 lteration O

® m— train l0ss
204 -
100 A
20 - 10 4 1549 -
("]
(%]
200 - L2 -
104 -
300 - 051 3
40 - 20 - ey
O.O ) | | | o B
400 0 200 400 600 800
iterations
60 - 30 -
500 -
600 -
80 7 40 i 1 OO
700 - 1 O
0 50 100 0 10 20 30 40 0 5
R 0.000 ....................................................
.......... 0.00.
- 0000 ....................................................
i —0.008 - —-0.004
T T T T T T T T —0'013 T T T
0 20 40 60 80 100 O 10 20 30 40 50 0 2 4 §) 8 10

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

FC 1 FC 2 FC 3 lteration 1

0 0 - = 0 2.5 1
C - o n - = = mm= train loss
s 2" Fh m mlam 2 " I'n :
5] jm] ‘ :
Y SRR TAE 204 %
100 v ¢
W 2 e A0 b H § BN e o I . .
| ] N | | .
NI e AIMIAS 20 - B r o u] W o | . 1 10 4 1.5 1
AR Nt v
200 sy 4= T < .
Ty - - " - '
U N .. B 1 :h . -
ik 1 1 Hl . 3
300 AMAEINA TrEPIE T J] PR 06 N
ol el e pu e ! y I p & 201
SRR RN - - = W oo on mme St ddag
PRGN = 0 200 400 600 800
400 PRI Y = z " iterations
i i z l
. ¥ i v A 60 - - g "t ".dA l- - 30
500 _ﬁ"“‘m.’@m":‘m E N N EEEE SN N  EOE N .. |=
Ao 1 L0 - O EEE (= EEmm
LI R
g A | § i = 784
600 -l A IR mpe g | g g e
AULNELPRIR VD 80 - m o =] " o L 40 . . . . 1 OO
MUK BT DR P I8 F " TE l 'R 50
A e H EEE | jm L I | - u l
700 4 o EEE N " == mnm 1 O
e b L PR PEE BN NN (W Il-
. | I O . | I y o ll L
, | n " Sy w By sl I ,
0 50 100 0 10 20 30 40 0 5
UMM R U S LT
- ‘._.&09*._. * ittt _ . A
..... __Moﬁ_‘.'.._.h........_,..IJ..._._.II.vIl........
—0.008 —0.004
T T T T T T T _0'013 T T T
0 20 40 60 80 100 0 10 20 30 40 50 0 2 4 6 8 10

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

Sum over layers

MNIST-FC MNIST-LeNet CIFAR-ResNet
0.0 ~ 2 2 0.0 7
—0.2 A1 —0.2 - 0-6- What? \
—0.4 - —0.4 - 0.4 - /
067 ~0.6 - 0.2 1
: 2
SO Lo L[| L
—1.0 A —0.2 -
_1.2 .
~1.41 —1.2” ~0.4 1
16 ~1.4- .
—6.5 OiO 0i5 liO 1i5 ZiO 2i5 —6.5 OiO 0i5 1i0 1i5 2i0 2i5 3i0 3i5 (I) é llO 1I5 2I0
lay lay layer

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



Request for Plot: Approximate LCA



Request for Plot: Approximate LCA

Example: training set of 1000 batches



Request for Plot: Approximate LCA

Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x



Request for Plot: Approximate LCA

Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x

Original LCA:

V Lirain(0;) - (0i31 — 0i)
Compute per batch: 1000x



Request for Plot: Approximate LCA

Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x

Original LCA:

V Lirain(0;) - (0i31 — 0i)
Compute per batch: 1000x

Approximate LCA:
V Lpatch i(0i) - (0i+1 — 0))



Request for Plot: Approximate LCA

Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x

Original LCA:

V Lirain(0;) - (0i31 — 0i)
Compute per batch: 1000x

Approximate LCA:
Vst itf - —1—F)— Biased




Request for Plot: Approximate LCA

Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x

Original LCA:

V Lirain(0;) - (0i31 — 0i)
Compute per batch: 1000x

Approximate LCA:
Vst itf - —1—F)— Biased

V Lpatch ix1(60i) - (0ir1 — 6;)




Request for Plot: Approximate LCA

Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x

Original LCA:

V Lirain(0;) - (0i31 — 0i)
Compute per batch: 1000x

Approximate LCA:
Vst itf - —1—F)— Biased

V Lpateh i+1(0;) - (0i+1 — 0;)
Compute per batch: 1x




Request for Plot: Approximate LCA

Is this approximation good?
Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x

Original LCA:

V Lirain(0;) - (0i31 — 0i)
Compute per batch: 1000x

Cumulative LCA

Approximate LCA:

Vhsaren (0= Biased o
V Lpatch i+1(0i) - (0is1 — 0))
Compute per batch: 1x




Request for Plot: Approximate LCA

Is this approximation good?

Example: training set of 1000 batches

Ordinary training: <
Compute per batch: 1x S
]
Original LCA: 2
vLtrain(é’i) ' (ei—l—l — (9!) (_;
Compute per batch: 1000x g
O Train set loss
-------- Sum LCA
Approximate LCA: Sum Approx LCA
Vhsaren (0= Biased -
eration
V Lpateh i+1(0;) - (0i+1 — 0;)

Compute per batch: 1x



Request for Plot: Approximate LCA

Is this approximation good?
Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x

Original LCA:

V Lirain(0;) - (0i31 — 0i)
Compute per batch: 1000x

Train set loss

Cumulative LCA

N It Sum LCA
ApprOX|mate LCA: Sum Approx LCA

VLbatch i@gi) y @9,-__1 9,) Biased I .
V Lpatch iv1(0;) - (0;11 — 6;) teration

Compute per batch: 1x Next questiqns:
e How to incorporate RK-47

e |fthis works, are per-layer sums
also well approximated?




|[dea #2: Computational Ethics

How we used to do Computer Vision How we align models now
e Humans create features e Humans write prompts (constitutions, specs)
e [Fallures = humans create smarter e Fallures = humans create smarter
features prompts
e Endless Whack-a-mole e Endless Whack-a-mole

See e.g. 24k token Claude system prompt:
“...Claude provides emotional support alongside
accurate medical or psychological information or
terminology where relevant.”

What worked better What might work better?
® Models learn their own features * Models learn their own ethics
e Start with using models to map
the existing, diverse landscape of
human ethics



Appendix: extra LCA slides



| CA: Loss Change Allocation for Neural Network Training

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

lteration O

m— train loss

""""""""""""""""

/84

100

50

10

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

FC 1 _ FC 2 FC 3 lteration O

® m— train l0ss
204 -
100 A
20 - 10 4 1549 -
("]
(%]
200 - L2 -
104 -
300 - 051 3
40 - 20 - ey
O.O ) | | | o B
400 0 200 400 600 800
iterations
60 - 30 -
500 -
600 -
80 7 40 i 1 OO
700 - 1 O
0 50 100 0 10 20 30 40 0 5
R 0.000 ....................................................
.......... 0.00.
- 0000 ....................................................
i —0.008 - —-0.004
T T T T T T T T —0'013 T T T
0 20 40 60 80 100 O 10 20 30 40 50 0 2 4 §) 8 10

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

FC 1 FC 2 FC 3 lteration 1

0 0 - = 0 2.5 1
C - o n - = = mm= train loss
s 2" Fh m mlam 2 " I'n :
5] jm] ‘ :
Y SRR TAE 204 %
100 v ¢
W 2 e A0 b H § BN e o I . .
| ] N | | .
NI e AIMIAS 20 - B r o u] W o | . 1 10 4 1.5 1
AR Nt v
200 sy 4= T < .
Ty - - " - '
U N .. B 1 :h . -
ik 1 1 Hl . 3
300 AMAEINA TrEPIE T J] PR 06 N
ol el e pu e ! y I p & 201
SRR RN - - = W oo on mme St ddag
PRGN = 0 200 400 600 800
400 PRI Y = z " iterations
i i z l
. ¥ i v A 60 - - g "t ".dA l- - 30
500 _ﬁ"“‘m.’@m":‘m E N N EEEE SN N  EOE N .. |=
Ao 1 L0 - O EEE (= EEmm
LI R
g A | § i = 784
600 -l A IR mpe g | g g e
AULNELPRIR VD 80 - m o =] " o L 40 . . . . 1 OO
MUK BT DR P I8 F " TE l 'R 50
A e H EEE | jm L I | - u l
700 4 o EEE N " == mnm 1 O
e b L PR PEE BN NN (W Il-
. | I O . | I y o ll L
, | n " Sy w By sl I ,
0 50 100 0 10 20 30 40 0 5
UMM R U S LT
- ‘._.&09*._. * ittt _ . A
..... __Moﬁ_‘.'.._.h........_,..IJ..._._.II.vIl........
—0.008 —0.004
T T T T T T T _0'013 T T T
0 20 40 60 80 100 0 10 20 30 40 50 0 2 4 6 8 10

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

loss gradient A t I A t I
() 0 o >
H - =p path taken from 6, to 0; R
9 O cumul cumul \o\
: LCA LCA ~~"~...
. T--9
9
Vo 0 dime? f dim-1 § dim-2
' '} < .’ / >
) 9 L 0.0006 -
v Toy data 00004 - R
Real data 00000 | AT ,
LC | |
~0.0002 -
~0.0004 -
~0.0006 -
Simple approach — New visibility into training 00008 - Training iteration

0 1000 2000 3000 4000 5000
Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

. : : CIFAR ResNet, SGD
0 Training Is noisy 100 4.0
- 3.5
80
3.0
e Holds for all layers .
S 60 '
e )
3 2.0 &
e Holds for all params S =
Y 40 1.5
1.0
e Holds for many hyperparams
20 -
(50.3% — 51.6%) 0.5
0 0.0
0 1000 2000 3000 4000 5000
iterations
Average percent of weights helping each iteration ResNet SGD, mean = 0.505, stdev = 0.013
51.5
25000 A
51.0
£ 20000 1
350.5 %
2 5 15000 -
S 50.0 ;3_,
8 & 10000 -
5
49.5 5000 -
49.01__ | | | | oL, | | |
0 5 10 15 20 0.44 0.46 048 050 052 054 056 0.58
kernel layer fraction of iterations helped

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

@ Some layers go backwards

MNIST-LeNet CIFAR-ResNet

MNIST-FC

fractional steps

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.

0.0 - 0.0
Wh
—0.2 -0.2 at? \
_0.4 ox 0.4 - /
—0.6 06 0.2 1
Y _o0s8 9 9
© © —0.8 © 00= -
E 10 : g I"""““II |
—1.0 - —0.2 -
—-1.2 - '
~1.4 1.2 ~0.4 A
] ~1.4 -
-1.6 —0.6 A
—-0.5 0.0 0.5 1.0 1.5 2.0 2.5 —-0.5 0.0 0.5 1.0 1.5 2.5 0 5 10 15 20
layer layer layer
dient val L —0.44
0.06 1 —*— 9gradient values
e whole steps L _0.45
—e— weights '
0.04 -
- —0.46
0.02 cu
£ ~0.47 5
o 2z
'8 OOO ........................................................................... _048 %
o k)
=
—0.02 —0.49
—0.04 - - —0.50
~0.06 - - —0.51
125 150 175 200 225 250 275 300 325




| CA: Loss Change Allocation for Neural Network Training

MNIST-FC

|||||

||||||||
2P P 2 O o o o o
mmmmmmmmm
.........

Layer 1

Layer 2

Layer 3

-’

0 25

Training iterations

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

MNIST-FC

|||||

||||||||
2P P 2 O o o o o
mmmmmmmmm
.........

Layer 1

Layer 2

Layer 3 ‘

-’

0 25

Training iterations

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

MNIST-FC

|||||

||||||||
ooooooooo

o » N O ® o » N O
.........

Layer 1

@ @
Layer 2 ‘ ‘ ‘
Layer 3 ‘ ‘ ‘ ‘

-’

0 25

Training iterations

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

9 Some micro-learning is synchronized

MNIST-FC

0.0 1
-0.2
—-0.41
( o o ® ( N J e o ( e o
~0.6 1 Class: 9 - [ [ 4 e o o o o
9 081 o000 O ©° [ ( ([ o
g—l.o-
-1.21
14 Class: 8 1
-1.6 1

|||||

° o o ° ° °
Class: 7 1 : oo o o oo ° Y
) o0 o0 °
Class: 61 ®© @ o0 e o o
e o o o
oo o0 o °
Class: 5 1 : o o °

° o o
Class: 4 °
o o o

eeoe0 o o e o oo o0 ° ° °
Class:3—: ° e o o ° ° ° ° o o ° ° °
Class: 2 1
Class: 1 1
° °

Class: 0 - ) ° ™

e o

0 25 50 75 100 125 150 175 200

Training Iteration

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training

0 Training Is noisy

@ Some layers go backwards @ Some micro-learning is synchronized

MNIST-FC

0.0 1

—-0.2 1

—-0.4 1

° ° ° ° o0

—0.61 Class: 9 - ) ® ® I ) I )
9 _os CY X I ° o o °
g—l.o-

-1.2 4

“141 Class: 8 1

—-1.61

|||||

° o o ° ° °
Class: 7 1 : oo o o oo ° Y
) o0 o0 °
Class: 61 ®© @ o0 e o o
e o o o
oo o0 o °
Class: 5 1 : o o °

° o o
Class: 4 °
o o o

o 00 ( ] ( ] ([ ] ([ ) o0 [ B )
Class: 3 : ° e o o ° Y ° °
Class: 2 A
Class: 1 1
( ] ( ]

Class: 0 A1 ) ° °

e O

0 25 50 75 100 125 150 175 200

Training Iteration

Janice Lan, Hattie Zhou, Rosanne Liu, Jason Yosinski. NeurlPS 2019.



| CA: Loss Change Allocation for Neural Network Training
NeurlPS 2019.

Blog: https://eng.uber.com/loss-change-allocation/

[ ]
[ ]
B
il

eng.uber.com

Uber Engineel’ing Blog v Research v Engineering Offices v

Introducing LCA: Loss Change
Allocation for Neural Network Training

E E Popular Articles

Sign up for Uber Engineering updates:

L
X Uber’s Big Data Platform: 100+
J Petabytes with Minute Latency
f 1 T LeNet Convl, Trer 3 LCA o . “ )
Ghare lu.\sl gradient - ‘!k ".._H B
9 = =p path taken from 6, to 0 T =
, T TRk —
in ® 0 | S & ] 'g_ Meet Michelangelo: Uber’s
Share . o AR e 4 P Machine Learning Platform
: 0 dim-2 f = I P 13 2017
Y ] . ST 4 {
.0 e [
84, Leag® : .00 Introducing Ludwig, a Code-Free
S EET i
S 0 di-1 1 DN 1 ) I!DI.I.IIE Deep Learning Toolbox
Reddit e : T N.E AN ruary 11, 201
e

» X n | | n n n
Neural networks (NNs) have become prolific over the last decade and now power machine e J al l I ‘ e I al l R O Sa l I l I e I I l l H att I e 2 I I O l I l aS O I l YOS I I l S kl
learning across the industry. At Uber, we use NNs for a variety of purposes, including detecting

_— . . - . . . A Introducing AresDB: Uber’s GPU-
and predicting object motion for self-driving vehicles, responding more quickly to customers, and (f } Po;ver:d gpern Source. R;a)—tlme
building better maps. -t Analytics Engine

Why Uber Engineering Switched
from Postgres to MySQL

ARESDB

While many NNs perform quite well at their tasks, networks are fundamentally complex systems,
and their training and operation is still poorly understood. For this reason, efforts to better ‘;\@lﬁ )
understand network properties and model predictions are ongoing, both at Uber and across the o

H3: Uber’s Hexagonal Hierarchical
Spatial Index

broader scientific community.


https://eng.uber.com/loss-change-allocation/

