Two small ideas:
Approximate LCA, Computational Ethics

/& MLC Research Jam
28 May 2025

Jason Yosinski

jason@yosinski.com



arXiv:1909.01440v1 [cs.LG] 3 Sep 2019

|dea #1: Approximate LCA (Loss Change Allocation

LCA: Loss Change Allocation for
Neural Network Training

Janice Lan Rosanne Liun Hattie Zhou Jason Yosinski
Uber Al Uber Al Uber Uber Al
janlanCuber.com rosanneQuber.com hattieQuber.com yosinski@uber.com

Abstract

Neural networks enjoy widespread use, but many aspects of their training, represen-
tation, and operation are poorly understood. In particular, our view into the training
process is limited, with a single scalar loss being the most common viewport into
this high-dimensional, dynamic process. We propose a new window into training
called Loss Change Allocation (LCA), in which credit for changes to the network
loss is conservatively partitioned to the parameters. This measurement is accom-

plished by p the p of an appi ate path integral along the
training trajectory using a Runge-Kutta integrator. This rich view shows which
ara ar ible f¢ ing or i ing the loss during training,

p ¢ resp

or which parameters “help” or “hurt” the network’s learning, respectively. LCA
may be summed over training iterations and/or over neurons, channels, or layers
for increasingly coarse views. This new measurement device produces several
insights into training. (1) We find that barely over 50% of parameters help during
any given iteration. (2) Some entire layers hurt overall, moving on average against
the training gradient, a phenomenon we hypothesize may be due to phase lag in
an oscillatory training process. (3) Finally, increments in learning proceed in a
synchronized manner across layers, often peaking on identical iterations.

1 Introduction

In the common stochastic gradient descent (SGD) training setup, a parameterized model is iteratively
updated using gradients computed from mini-batches of data chosen from some training set. Unfortu-
nately, our view into the high-dimensional, dynamic training process is often limited to watching
a scalar loss quantity decrease over time. There has been much research attempting to understand
neural network training, with some work studying geometric properties of the objective function
[7. 20,27, 24,121], properties of whole networks and individual layers at convergence [4!(7, 15, 34],
and neural network training from an optimization perspective [29,/4,/5, 3, 19]. This body of work in
aggregate provides rich insight into the loss landscape arising from typical combinations of neural
network architectures and datasets. Literature on the dynamics of the training process itself is more
sparse, but a few salient works examine the learning phase through the diagonal of the Hessian,
mutual information between input and output, and other measures [1, 25,14].

In this paper we propose a simple approach to inspecting training in progress by decomposing changes
in the overall network loss into a per-p Loss Change Alle ion or LCA. The p for
computing LCA is straightforward, but to our knowledge it has not previously been employed for
investigating network training. We begin by defining this measure in more detail, and then apply it to
reveal several interesting properties of neural network training. Our contributions are as follows:

1. We define the Loss Change Allocation as a p per-iteration d position
of changes to the overall network loss (Section|2). Exploring network training with this
measurement tool uncovers the following insights.
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Figure 1: (a) Illustration of this paper’s method on a toy two-dimensional loss surface. We allocate
credit for changes to the model’s training loss to individual parameters (b) # dim-1 and (c) # dim-2
by multiplying parameter motion with the corresponding individual p of the gradient of
the training set. This partitions changes to the loss into individual Loss Change Allocation (LCA)
components allows us to measure which parameters learn at each timestep, providing a rich view into
the training process. In the example depicted, although both parameters move, the second parameter
captures all the credit, as only its component of the gradient is non-zero.

2. Learning is very noisy, with only slightly over half of parameters helping to reduce loss on
any given iteration (Section[})A

w

Some entire layers consistently drift in the wrong direction during training, on average
moving against the gradient. We propose and test an explanation that these layers are
slightly out of phase, lagging behind other layers during training (Section|4).

>

We contribute new evidence to suggest that the learning progress is, on a microscopic level,
synchronized across layers, with small peaks of learning often occurring at the same iteration
for all layers (Section|5).

2 The Loss Change Allocation approach

‘We begin by defining the Loss Change Allocation approach in more detail. Consider a parameterized
training scenario where a model starts at parameter value 6 and ends at parameter value 67 after
training. The training process entails traversing some path P along the surface of a loss landscape
from g to O7. There are several loss landscapes one might consider; in this paper we analyze the
training process, so we measure motion along the loss with respect to the entire training set, here
denoted simply L(#). We analyze the loss landscape of the training set instead of the validation
set because we aim to measure training, not training confounded with issues of memorization vs.
generalization (though the latter certainly should be the topic of future studies).

The approach in this paper derives from a straightforward application of the fundamental theorem of
calculus to a path integral along the loss landscape:

L(67) — L(6o) :/C(Vab(ﬂ)-df?) [¢)

where C is any path from 6, to 6 and (-,-) is the dot product. This equation states that the change in
loss from 6, to 67 may be calculated by integrating the dot product of the loss gradient and parameter
motion along a path from 6, to 7. Because V4L(f) is the gradient of a function and thus is a
conservative field, any path from 6, to 67 may be used; in this paper we consider the path taken by
the optimizer during the course of training. We may approximate this path integral from 6, to 67 by
using a series of first order Taylor approximations along the training path. If we index training steps
byt € [0,1,..., T}, the first order approximation for the change in loss during one step of training is
the following, rewritten as a sum of its individual components:

L(0r11) — L(6:) = (VoL(6e), Ori1 — br) 2)

K-1 K-1
= > (VoL(6) (60, — 67) := Y A [©)

i=0 i=0
where VL (6,) represents the gradient of the loss of the whole training set w.r.t. 6 evaluated at 6,
v represents the i-th element of a vector v, and the parameter vector § contains K elements. Note
that while we evaluate model learning by tracking progress along the training set loss landscape

@ See training in progress!
@ Very slow

If we use aggressive
approximation to make it faster,
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can it still provide useful
visibility?
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Request for Plot: Approximate LCA

Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x

Original LCA:

V Lirain(0;) - (0i31 — 0i)
Compute per batch: 1000x
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Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x

Original LCA:

V Lirain(0;) - (0i31 — 0i)
Compute per batch: 1000x

Approximate LCA:
V Lpatch i(0i) - (0i+1 — 0))
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Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x

Original LCA:
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Request for Plot: Approximate LCA

Is this approximation good?
Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x

Original LCA:

V Lirain(0;) - (0i31 — 0i)
Compute per batch: 1000x

Cumulative LCA

Approximate LCA:

Vhsaren (0= Biased o
V Lpatch i+1(0i) - (0is1 — 0))
Compute per batch: 1x
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Is this approximation good?

Example: training set of 1000 batches

Ordinary training: <
Compute per batch: 1x S
]
Original LCA: 2
vLtrain(é’i) ' (ei—l—l — (9!) (_;
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O Train set loss
-------- Sum LCA
Approximate LCA: Sum Approx LCA
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Compute per batch: 1x



Request for Plot: Approximate LCA

Is this approximation good?
Example: training set of 1000 batches

Ordinary training:
Compute per batch: 1x

Original LCA:

V Lirain(0;) - (0i31 — 0i)
Compute per batch: 1000x

Train set loss

Cumulative LCA

N It Sum LCA
ApprOX|mate LCA: Sum Approx LCA

VLbatch i@gi) y @9,-__1 9,) Biased I .
V Lpatch iv1(0;) - (0;11 — 6;) teration

Compute per batch: 1x Next questiqns:
e How to incorporate RK-47

e |fthis works, are per-layer sums
also well approximated?




|[dea #2: Computational Ethics

How we used to do Computer Vision How we align models now
e Humans create features e Humans write prompts (constitutions, specs)
e [Fallures = humans create smarter e Fallures = humans create smarter
features prompts
e Endless Whack-a-mole e Endless Whack-a-mole

See e.g. 24k token Claude system prompt:
“...Claude provides emotional support alongside
accurate medical or psychological information or
terminology where relevant.”

What worked better What might work better?
® Models learn their own features * Models learn their own ethics
e Start with using models to map
the existing, diverse landscape of
human ethics
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@ Some layers go backwards
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